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Duffing Equation 

In this analysis, the nonlinear ODE named the Duffing Equation was investigated both analytically 

and numerically. The general form of the Duffing Equation can be expressed as  

 𝑚𝑢̈ + 𝑟𝑢̇ + 𝛼𝑢 + 𝛽𝑢3 = 𝐹0𝑐𝑜𝑠𝛺𝑡 (1) 

where m, r, α, β, F0, and Ω are arbitrary constants, u is the dependent variable, and t is the 

independent temporal variable. In the physical spring-mass system, the variable u represents 

displacement, α and  β make up the nonlinear spring constant, r is a damping coefficient, and m is 

the mass. The right side of Equation 1 is the forcing term of the nonlinear differential equation, 

which oscillates in time with frequency Ω.  

Equilibrium Points 

It is important to investigate the equilibrium points of this nonlinear differential equation and this 

can be done analytically by considering the homogeneous case given by Equation 2. 

 𝑚𝑢̈ + 𝑟𝑢̇ + 𝛼𝑢 + 𝛽𝑢3 = 0 (2) 

Defining the state variables of Equation 2 as  

 𝑢 = 𝑢 (3) 

 𝑣 = 𝑢̇ (4) 

and taking the time derivative provides the state space representation of Equations 3 and 4. 

 𝑢̇ = 𝑣 (5) 

 
𝑣̇ =

−r𝑣 − αu − βu3

𝑚
 (6) 

Substituting values for the constants as m = r = β = 1 and α = -1, Equation 5 and 6 can be 

rewritten as  

 𝑢̇ = 𝑣 (7) 

 𝑣̇ = −𝑣 + u − u3 (8) 

Setting Equations 7 and 8 equal to zero and solving for u and v gives  

 𝑣 = 0 (9) 

 u = 0,±1 (10) 
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therefore, the equilibrium points for the system are (0,0), (1,0), and (-1,0). To investigate the 

stability of the equilibrium points, Equations 7 and 8 must be linearized about the equilibrium 

points. Linearization in terms of the two variables, u and v, can be done using Taylor series 

expansion. Equations 7 and 8 can be rewritten as 

 𝑢̇ = 𝑣 = 𝑃(𝑢, 𝑣) (11) 

 𝑣̇ = −𝑣 + u − u3 = 𝑄(𝑢, 𝑣) (12) 

and linearization about the equilibrium points approximates Equations 11 and 12 as 

 𝑢̇ = 𝑃𝑢(𝑢, 𝑣)(𝑢 − 𝑢𝑠) + 𝑃𝑣(𝑢, 𝑣)(𝑣 − 𝑣𝑠) (13) 

 𝑣̇ = 𝑄𝑢(𝑢, 𝑣)(𝑢 − 𝑢𝑠) + 𝑄𝑣(𝑢, 𝑣)(𝑣 − 𝑣𝑠) (14) 

where Pu and Pv are the partial derivatives of P(u,v) with respect to u and v respectively, Qu and 

Qv are the partial derivatives of Q(u,v) with respect to u and v respectively, and us and vs are the u 

and v components of the equilibrium point of interest. The pre-factors in Equations 13 and 14 can 

be expressed as   

 𝑃𝑢(𝑢, 𝑣) = 0 (15) 

 𝑃𝑣(𝑢, 𝑣) = 1 (16) 

 𝑄𝑢(𝑢, 𝑣) = 1 − 3𝑢𝑠
2 (17) 

 𝑄𝑣(𝑢, 𝑣) = −1 (18) 

where Qu depends on the particular equilibrium point.  

Equilibrium Point (0,0) 

Equations 13 and 14 can be linearized about the equilibrium point at the origin and expressed as  

 𝑢̇ = 𝑣 (19) 

 𝑣̇ = 𝑢 − 𝑣 (20) 

The roots of the characteristic equation can be evaluated as  

 
𝜆1,2 =

(𝑎 + 𝑑) ± √(𝑎 − 𝑑)2 + 4𝑏𝑐

2
 (21) 

and in this case a = 0, b = 1, c = 1, and d = -1; with these coefficient values, the roots can be 

expressed as 
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𝜆1,2 =

−1 ± √5

2
 

(22) 

where the roots are real and have opposite signs implying that there is a saddle at the origin.  

Equilibrium Points (±𝟏,0) 

For the equilibrium point (1,0), Equations 13 and 14 can be linearized as 

 𝑢̇ = 𝑣 (23) 

 𝑣̇ = −2(𝑢 − 1) − 𝑣 (24) 

By defining V = v-vs and U = u-us, Equations 23 and 24 can be rewritten as  

 𝑈̇ = 𝑉 (25) 

 𝑉̇ = −2𝑈 − 𝑉 (26) 

and the roots can be identified as  

 
𝜆1,2 =

−1 ± 𝑖√7

2
 (27) 

which represent a complex conjugate pair with negative real roots, this implies that the point (1,0) 

is a stable focus. Similarly, for the point (-1,0), the system can be linearized and expressed as 

 𝑢̇ = 𝑣 (28) 

 𝑣̇ = −2(𝑢 − (−1)) − 𝑣 (29) 

And using the previous variable substitutions to shift the point of interest to the origin, the Equation 

25 and 26 are recovered, implying that there is also a stable focus at the point (-1,0).  

Phase Portraits and Parameter Node Bifurcation 

The phase diagram for the unforced system with α = -1 and r = m = β = 1 was plotted in MATLAB, 

and is shown in Figure 1. It can be seen from the Figure that there is indeed a stable focus at the 

points (1,0) and (-1,0) as well as a saddle at the origin. 
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Figure 1. Phase diagram of unforced system with parameter values α = -1 and r = m = β = 1 

An interesting area to explore is how the equilibrium points, or nodes, evolve as we vary the 

parameters of the homogenous equation. Figure 2 includes the case of r = m = β = α = 1, which 

has only a single stable node at (0,0).  

 

Figure 2. Phase diagram of unforced system with parameter values α = r = m = β = 1 
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When the parameters are adjusted to β = -1 and r = m = α = 1, we again find three nodes. They are 

in the same locations as the nodes in Figure 1, but the stability is reversed. A stable node is located 

at (0,0) and two saddle nodes are located at (1,0) and (-1,0). The shift from one node to three 

corresponding to α and β switching sign can be visualized with a bifurcation diagram. Figure 3 

shows this bifurcation, with the previously used α values, as well as the node locations drawn.  

 

Figure 3. Bifurcation diagram of α parameter nodes. For α > 0 there is a single stable spiral. For 

α < 0 the node bifurcates into 2 stable spirals and 1 saddle. 

 

Now considering the physical system along with the current understanding, we investigate the 

effect of the forcing term. It will cause phase space trajectories to be shifted by some ∆𝑢 through 

kinematics. Then, if the shift is sufficiently large, those trajectories will “jump” to the next stable 

node in the direction of the shift. This is proven mathematically when the forcing term is given a 

nonzero value in the numerical simulation. 
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Numerical Simulation with Nonzero Forcing Term 

The homogeneous Duffing Equation was used to investigate the equilibrium points, but it is also 

important to understand how the system behaves under an applied force. The system was 

numerically solved in MATLAB by defining the amplitude of the force as F0 = 1, α = -1, and 

keeping all of the other constants equal to 1. The initial conditions were chosen so that the position 

(U) and velocity (V) of the system were zero. A phase diagram was generated from the numerical 

simulation and is shown in Figure 4. Based on the chosen constants, as time approaches infinity, 

the system approaches a limit cycle that jumps back and forth between the equilibrium points (-

1,0) and (1,0).  

 

Figure 4. Phase diagram for forced system resulting in limit cycle 

 

The origin is clearly avoided which makes sense, since there is a saddle there. The limit cycle 

shown in Figure 4 can be visualized further by looking at the numerical solution to the Duffing 

Equation over time shown in Figure 5. There is some distortion in the periodicity at the beginning, 

but as time goes on, a well-defined periodicity starts to show up in the time response.   
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Figure 5. Time response of forced duffing equation with F0 = Ω = m = r = β = 1 and α = -1. 

 

The Chaotic System 

Adjusting the parameter values of the Duffing Equation to specific ranges can lead to a chaotic 

system. This idea is investigated by using the parameter values given by β = m = 1, r = 0.3, α = -

1, Ω = 1.2, and F0 = 0.5 [1]. The initial conditions are given 3 different values, shown in Figures 

6 – 8. From the mathematical definition of chaos, the system should have a different solution for 

each of these sets of initial conditions. 
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Figure 6. Phase diagram (left) and time response plot (right) for forced duffing equation with β = 

m = 1, r = 0.3, α = -1, Ω = 1.2, and F0 = 0.5 (Initial conditions: (U,V) = (0,0)) 

 

 

Figure 7. Phase diagram (left) and time response plot (right) for forced duffing equation with β = 

m = 1, r = 0.3, α = -1, Ω = 1.2, and F0 = 0.5 (Initial conditions: (U,V) = (0,1)) 
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Figure 8. Phase diagram (left) and time response plot (right) for forced duffing equation with β = 

m = 1, r = 0.3, α = -1, Ω = 1.2, and F0 = 0.5 (Initial conditions: (U,V) = (-1,0)) 

From the above images, it is clear that different initial conditions can create significantly different 

solutions to the Duffing equation. This very unique property can only be found in nonlinear 

systems such as this [2]. We investigated both the homogenous and forced Duffing equation in 

this work. The Duffing equation provides a great example of how a mathematical concept such as 

chaos can be demonstrated in a physical system. 
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