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1 Introduction

This analysis is focused on the dynamics of a symmetric spinning top, with one end fixed at the
origin. Figure 1 shows a depiction of the system under consideration.

Figure 1: Diagram of Symmetric Spinning Top

A few things to consider in this problem:

• The space frame is designated by x̂, ŷ, and ẑ

• Friction is neglected.

• The principal axes of the symmetric spinning top (also called the body axes in this analysis)
are designated as ê1, ê2, and ê3 where the third is the vector along the spinning axis and
the others are free (due to symmetry) as long as they are orthogonal to the third and to each
other.
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2 Derivation of Lagrangian

In order to analyze the dynamics, let’s derive the Lagrangian for the system using Euler angles .
Consider the convention below:

Figure 2: The axes ê1, ê2, ê3 are initially coincident with the stationary frame. After three
successive rotations, the body axes can be transformed into any orientation. Left: The first
rotation is ϕ about axis ẑ. Center: The second rotation is θ about axis ê′2. Right: The third
rotation is ψ about axis ê3 [1].

With the Euler angle convention outlined above, we can define the angular velocity of the body
frame with respect to the space frame as:

ω = ϕ̇ẑ + θ̇ê′2 + ψ̇ê3 (1)

Now, recall that the principal axes are the eigenvectors in the eigenvalue problem

Iω = λω (2)

where I is the inertia tensor, ω is the angular velocity vector (in this case eigenvector), and λ is
the corresponding eigenvalue (in this case the corresponding principal moment). In the scenario
where two principal moments are equal, the corresponding two principal axes are free to take
any direction that is orthogonal to the third as well as each other. For the symmetric top, the two
principal moments, λ1 and λ2, are equal. Therefore, we can pick ê′1 and ê′2 as the first two principal
axes; Using this fact and the relation

ẑ = (cosθ)ê3 − (sinθ)ê′1 (3)

Equation 1 can easily be rewritten with respect to the body frame using

ω = (−ϕ̇sinθ)ê′1 + θ̇ê′2 + (ψ̇ + ϕ̇cosθ)ê3 (4)

The Lagrangian demands a kinetic energy term, to obtain this we need the angular momentum
vector L. Generally, the angular momentum can be expressed as

L = Iω (5)
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Since we are using a set of principal axes, the inertia tensor is diagonal, with the principal moments
along the diagonal. With this fact, and Equation 4, the angular momentum can be expressed as

L = (−λ1ϕ̇sinθ)ê′1 + λ1θ̇ê
′
2 + λ3(ψ̇ + ϕ̇cosθ)ê3 (6)

For future reference, let’s define the following, first of which is the momentum about the body axis
e3:

L3 = λ3ω3 = λ3(ψ̇ + ϕ̇cosθ) (7)

and the second is the momentum about the z-axis of the space frame:

Lz = L · ẑ (8)

Lz = ((−λ1ϕ̇sinθ)e′1 + λ1θ̇e
′
2 + λ3(ψ̇ + ϕ̇cosθ)e3) · ((cosθ)e3 − (sinθ)e′1) (9)

Lz = λ1ϕ̇sin
2θ + λ3(ψ̇ + ϕ̇cosθ)cosθ (10)

Lz = λ1ϕ̇sin
2θ + L3cosθ (11)

Now we can write the kinetic energy using:

T =
1

2
L · ω (12)

That gives us

T =
1

2
λ1(ϕ̇

2sin2θ + θ̇)2 +
1

2
λ3(ψ̇ + ϕ̇cosθ)2 (13)

The potential energy of the rigid body can be defined as

U =MgRcosθ (14)

where M is the total mass, g is the acceleration due to gravity, and R is the distance between the
pivot point O and the center of mass. Thus, the Lagrangian of the system can be expressed as:

L = T − U (15)

L =
1

2
λ1(ϕ̇2sin

2θ + θ̇2) +
1

2
λ3(ψ̇ + ϕ̇cosθ)2 −MgRcosθ (16)

3 Euler-Lagrange equations

The general form of the Euler-Lagrange equations, without generalized forces, for a system with n
generalized coordinates qi and corresponding velocities q̇i is

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= 0 (17)
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The three resulting Lagrange equations are as follows

d

dt

(
∂L
∂θ̇

)
− ∂L
∂θ

= 0 (18)

d

dt

(
∂L
∂ϕ̇

)
− ∂L
∂ϕ

= 0 (19)

d

dt

(
∂L
∂ψ̇

)
− ∂L
∂ψ

= 0 (20)

3.1 θ Equation

Using the Lagrangian in Equation 5, Equation 18 gives

λ1θ̈ = λ1ϕ̇
2sinθcosθ − λ3(ψ̇ + ϕ̇cosθ)ϕ̇sinθ +MgRsinθ (21)

3.2 ϕ Equation

ϕ does not appear in the Lagrangian, thus:

∂L
∂ϕ̇

= λ1ϕ̇sin
2θ + λ3(ψ̇ + ϕ̇cosθ)cosθ = const (22)

This implies that
Lz = const (23)

3.3 ψ Equation

ψ does not appear in the Lagrangian, thus:

∂L
∂ψ̇

= λ3(ψ̇ + ϕ̇cosθ) = const (24)

This implies that
L3 = const (25)

3.4 E-L Notes

The Euler-Lagrange equations have revealed that Lz and L3 are constant. These constants and
Equation 21 fully provide the dynamics of the system. A numerical evaluation of these dynamics
is discussed in the next section.
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4 Numerical Evaluation and Simulation

Let’s solve this system numerically for θ, ϕ, and ψ . To do so we begin by setting up the system of
equations. Equation 21 can be rewritten as

θ̈ = ϕ̇2sinθcosθ − λ3
λ1

(ψ̇ + ϕ̇cosθ)ϕ̇sinθ +
1

λ1
MgRsinθ (26)

and from Equation11 we get

ϕ̇ =
Lz − L3cosθ

λ1sin2θ
(27)

and from Equation 22 we get

ψ̇ =
L3

λ3
− ϕ̇cosθ (28)

Equations 26-28 can be used the construct a set of four first order differential equations which are
expressed as

dθ

dt
= θ̇ (29)

dθ̇

dt
= ϕ̇2sinθcosθ − λ3

λ1
(ψ̇ + ϕ̇cosθ)ϕ̇sinθ +

1

λ1
MgRsinθ (30)

dϕ

dt
=
Lz − L3cosθ

λ1sin2θ
(31)

dψ

dt
=
L3

λ3
− ϕ̇cosθ (32)

Equations 29-32 can be solved simultaneously using Runga Kutta Methods. In this case, MATLAB’s
ODE45 function was used to solve the system.

4.1 Example Case

Say you were to take hold of the tip of a spinning top that was fixed at the other end, but still
allowed to pivot about that point, and you spun it with a torque that was purely in the ê3 direction.
Now if we assume that the top had no other angular momentum except that imparted by the spinner
then Lz = L3cosθ0. Although this is the typical case of spinning a top, it results in an interesting
result. Recall Equation 27, if we look at the initial case where θ = θ0 we have

ϕ̇0 =
Lz − L3cosθ0
λ1sin2θ0

(33)

But we said in this specific case Lz = L3cosθ0 and so ϕ̇0 = 0. That means any time the system
returns to the initial θ0 the angular velocity about the ẑ axis is zero. This effectively results in a
periodic cusp trajectory, see Figure 3. Note, once the top is initially spun the Lz and L3 values
stay constant for all time. A MATLAB script is attached which shows an animation of this case,
parameters can be adjusted to explore other cases as well.
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Figure 3: Simulation
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