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1 Introduction

This document showcases a dynamical analysis of an N-link pendulum using Euler-Lagrange equa-
tions. To begin, let’s consider a 2D pendulum with N links and N joints depicted in Figure 1. This
pendulum is subjected to gravity in the −ŷ direction and dampening frictional forces at the joints.

Figure 1: 2D N-link Pendulum

To analyze the dynamics of this problem we use the Euler-Lagrange equations with with Rayleigh’s
Dissipation Function to model the non-conservative frictional forces. For n generalized coordinates,
the Euler Lagrange equations take the general form
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d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= Qi (1)

where L is the Lagrangian of the system qi are the generalized coordinates, q̇i are the generalized
velocities, and Qi are the generalized forces.

1.1 The Lagrangian & Non-conservative Forces

To model the non-conservative frictional forces at the joints we will use Rayleigh’s Dissipation
Function. Recall that Rayleigh’s Dissipation Function in 2D Cartesian coordinates can be expressed
as

F =
1

2

∑
j=1

(kjxv
2
jx + kjyv

2
jy) (2)

where j denotes the jth particle, kj(dir) denotes the coefficient of friction associated with a particle
j and direction, and vj(dir) denotes the velocity of a particle j in a particular direction. Without
going through the entire derivation, it can be shown that the component of the generalized force
resulting from the force of friction can be expressed as

Qi = −∂F
∂q̇i

(3)

Based on this contribution from friction, Equation 1 can be expressed as

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
+

∂F
∂q̇i

= 0 (4)

For the N-link pendulum problem the generalized coordinates are the the pendulum angles, this
can be represented as

qi = {θ1, θ2, ...θN} (5)

where the generalized velocities are
qi = {θ̇1, θ̇2, ...θ̇1} (6)

That means the Euler-Lagrange Equations can be written as

d

dt

(
∂L
∂θ̇i

)
− ∂L

∂θi
+

∂F
∂θ̇i

= 0 (7)

Now, let’s assume the the joints are subjected to rotational viscous damping and that

kj = kjx = kjy (8)

Therefore, Equation 2 can be rewritten as

F =
1

2

∑
j=1

(kj θ̇
2
j ) (9)

So far we have a valid set of Euler-Lagrange Equations with a generalized force component from
friction, now let’s define the Lagrangian for the system. For this problem we are considering the
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rods that connect particles to be mass less and that the particles have mass mi. The x and y
coordinates for each particle, in terms of the generalized coordinates, are given by

xi = lisinθi + li−1sinθi−1...+ l1sinθ1 (10)

yi = −licosθi − li−1cosθi−1...− l1cosθ1 (11)

We shall stick to using xi and yi to keep the Lagrangian compact but understand that that it is just
a shorthand for the right hand side of the expressions above. Now, differentiating these expressions
with respect to time, the kinetic energy can be expressed as

KE =
1

2

N∑
i=1

mi(ẋ
2
i + ẏ2i ) (12)

Since gravity is pointing in the −ŷ direction, the potential energy can be expressed as

PE =

N∑
i=1

(migyi) (13)

With Equations 12 and 13 the Lagrangian can be expressed as

L =

N∑
i=1

1

2
mi(ẋ

2
i + ẏ2i )− (migyi) (14)

Substituting the Lagrangian into Equation 7 provides N-equations of motion. These equations are
a set of nonlinear coupled differential equations.

1.2 Solving the Equations of Motion Numerically

To solve the equations of motion numerically, we need to isolate the generalized accelerations in
terms of the generalized coordinates and velocities. To do so, consider the set of Euler-Lagrange
equations:

d

dt

(
∂L
∂θ̇1

)
− ∂L
∂θ1

+
∂F
∂θ̇1

= 0

d

dt

(
∂L
∂θ̇2

)
− ∂L
∂θ2

+
∂F
∂θ̇2

= 0

...

d

dt

(
∂L
∂θ̇N

)
− ∂L
∂θN

+
∂F
∂θ̇N

= 0

Each of these equations are functions of every generalized coordinate, velocity, and acceleration,
therefore once they are evaluated they take the following form
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f1(θi, θ̇i, θ̈i) = 0

f2(θi, θ̇i, θ̈i) = 0
...

fN (θi, θ̇i, θ̈i) = 0

Now, there is a way to untangle this set of equations such as to isolate the accelerations in terms
of the generalized coordinates and velocity. Start with first equation in the set, isolate θ̈1, then
substitute θ̈1 into the second equation such that f2 is no longer an explicit function of θ̈1. Isolate
θ̈2 in the second equation and substitute θ̈1 into the third equation first, then substitute θ̈2 into
the third equation. The algorithm continues by isolating accelerations of the current equation and
substituting previous accelerations successively starting from the first. The result is that the last
equation in the set will be only a function of the generalized coordinates and velocities, after which
a backward substitution can be invoked to express every acceleration in this way. An example of
the forward substitution is shown in Figure 2 and the backward substitution is shown in Figure 3,
both considering 4 links of a chain.

Figure 2: Forward Substitution for 4 links. The bubble numbers indicate what sequence of substi-
tution should take place. The result is the fourth generalized acceleration being expressed solely in
terms of generalized coordinates and velocities
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Figure 3: Backward Substitution for 4 links. The substitutions start from the last equation and
then successively work back to the first equation. The order of substitutions per iteration are
irrelevant. The result is all accelerations being expressed solely in terms of generalized coordinates
and velocities

Note, the forward and backward substitutions can be computed symbolically, MATLAB was utilized
for this. Now that all of the equations of motions have the generalized accelerations isolated, the
system can be cast as a set of first order differential equations expressed as

dθ1
dt

= θ̇1

dθ̇1
dt

= θ̈1(θi, θ̇i)

...

dθN
dt

= θ̇N

dθ̇N
dt

= θ̈N (θi, θ̇i)

From this, Runge-Kutta Methods can be employed to solve this system numerically.

1.3 Closing Remarks

Although this system was assumed to be 2D, the analysis could be generalized to 3D as well, this
be used to capture the dynamics of a general N-link kinematic chain (e.g. robot manipulator). we
assumed that the links were mass less, however we typically deal with rigid bodies with mass in
real life. This analysis could be generalized to rigid bodies by reformulating the Lagrangian using
the center of mass of each link. Lastly, instead of using the Euler-Lagrange Equations, we could’ve
instead used the Newton-Euler Formulation, the equations of motion would be identical.
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